用网络分析仪测量 DC-DC 转换器的反馈环路特征
低频网络分析仪可以通过额外的注入电路向反馈环路注入源信号,以便测量处于工作状态的反馈环路。网络分析仪测量注入电路 (带有含高阻抗输入的接收机端口 R 和 T) 两端的交流电压的比值。在施加激励信号时要把信号注入到输入阻抗 (Zin) 很高、输出阻抗 (Zout) 很低的地方。
具体谈到DC-DC变换器的测试情况,通常都是使用由变压器和电阻组成的浮置激励施加电路,把测试信号加在反馈电路路径上的分压电路之前,如图1所示。通过把激励信号加在满足 Zin >> Zout 的点上,并让电阻 R 满足 Zin >> R >> Zout 的条件,我们就可以通过 T/R 比值的测量结果得到循环传递函数 –GH 的特性,这样的测量方法不会干扰反馈环路原本的特征。
注入的信号电平不能太高,以避免反馈环路进入非线性区域。应使用高输入阻抗的探头来完成探测,这样不会影响反馈环路的工作。
在测量频率范围方面,通常从 10 Hz 或 100 Hz 的低频率处开始测量。但一般说来,对测量 DC-DC 转换器的环路特征最重要的频率范围主要是在几 kHz 到几百 kHz 之间。LC 滤波器的谐振频率和环路的交叉频率都在这个范围内。因此,低频范围内的测量没必要如此严格。
注意这里讨论的测量方法是基于只适用于线性电压模式控制下的环路。它不适用于电流模式控制下的环路和非线性控制环路。
图 1. 负反馈控制系统的环路增益测量方法
环路增益测量配置示例
图2显示的配置示例使用 E5061B-3L5 LF-RF 网络分析仪的增益相位测试端口来测量环路增益。增益相位测试端口可提供 5 Hz 至 30 MHz 频率范围、1 MΩ/50 Ω 阻抗的可通断直接接收机输入。
使用变压器 T1 和电阻器 R5 组成浮置信号施加电路。R5 的阻值应远远小于 Zin (通常为几 kΩ 或几十 kΩ)。另外,如果 R5 的电阻值太小,注入的测试信号就会出现过度衰减。一般广泛使用的是 20 Ω 到 100 Ω,但是低电阻例如 5 Ω 可以提高变压器的带宽,这取决于使用的变压器。测量时,要把接收机的端口 R 和 T 设置为 1 MΩ 输入模式 (输入阻抗 Zin=1 MΩ// 30 pF)。使用同轴测试电缆把 R 和 T 端口与被测器件相连。对于这个环路增益测量配置,推荐使用同轴测试引线而不是 10:1 无源探头,因为在这个配置中,信号源端口和接收机端口都对被测件的接地浮置,10:1 无源探头会导致与杂散耦合有关的测量误差。 (注: 端口 R 和 T 对其机箱接地半浮置,浮置阻抗为大约 30 Ω,详细配置将在图 22 中介绍)。在这种情况下,如果同轴测试电缆的探测电容相对大一些就不是问题,因为这种测量要求的频率范围通常不超过 1 MHz,即便使用同轴测试电缆,我们也能获得足够高的探头输入阻抗。如果您在这个包括浮置信号源注入的测量配置中使用 10:1 无源探头,建议按照图 9 中虚线部分显示的配置,使用短引线将 LF OUT 端口 (分析仪的机箱接地) 的外部屏蔽连接到被测件的接地。
在测量中通常使用直流电子负载或大功率的电阻器作为转换器的负载。
在对测量系统进行校准时,需要把两个测试电缆的探头点在 TP1 测试点上做直通响应校准,这样可以把两个测试电缆之间幅度和相位的差异去掉。
图 2. 测量环路增益的配置示例
欲了解更多信息,欢迎登录安泰测试官方网站进行咨询。